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S U M M A R Y  
The problem of computing optimai bang-bang controls for a nonlinear control system is discussed. It is shown that the 
method of replacing the optimal bang-bang control problem by a parameter optimization problem leads to an efficient 
algorithm. The problem of bringing a rotating rigid body to rest in minimum time is used to illustrate the theory. In 
this example, the parameter optimization problem reduces to a one-dimensional search. 

1. Introduction 

Many attemps have been made in recent years to develop systematic computational procedures 
for the solution of nonlinear optimal control problems. The present paper deals with a special 
class of such problems, namely those for which the optimal control is known to be of bang-bang 
type. Sufficient conditions for the optimal control to be bang-bang are that each control 
variable is (a) bounded above and below, (b) appears linearly in the state equations, and (c) 
appears linearly or not at all in the performance index. These conditions are quite common in 
practice, for example in aerospace studies. 

Bryson, Denham and Dreyfus [1] and Denham and Bryson [2] extended the gradient method 
of Kelley [3] to the case when inequality constraints are present in the control and state vari- 
ables. In particular, they described a procedure for the numerical determination of optimal 
bang-bang controls. The basic idea of their method is to replace the control problem by a 
parameter optimization problem, the unknown parameters being the switching times for the 
controls. 

In subsequent sections, we shall use parameter optimization in conjunction with the 
Pontryagin Minimum Principle [4] to solve the problem of bringing a rotating rigid body to 
rest in minimum time, when the couples that may be applied to the body are bounded. It will 
be seen that the resulting iterative process is relatively simple and that the convergence in the 
numerical example (section 4) is rapid. 

2. General Theory 

This section follows closely the relevant part of reference [2]. The problem to be considered 
may be stated as follows. Suppose that we are given a control system with state equations 

=f ix ( t ) ,  u(t), t] ,  (1) 

where x = Ix1, x2, x3]. The components u~ of the control vector u are bounded above and below : 

un < ui < ui,, i = 1, 2, 3. (2) 

The initial time to and the initial state vector x (to) are given. At the final time ty, we require 

o[x(ty) ,  t , ]  = o (3) 
and 

0 [x (ty), ty] = 0, (4) 

where (2 and the components of ~ = [~01, ~z] are given functions of x (t) and t. The problem is 
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to find a control vector u that transfers the state vector from x (to) to x (ts) in minimum time 
t s -  to, in such a way that (1)-(4) are all satisfied. 

The reason for separating the terminal constraints into two parts, (3) and (4), is that in the 
iterative process to be developed it is convenient to use (3) to determine the final time t s. 
Ideally, if x* (t) is the optimal trajectory, then the function f2 [x* (t), t] should not vanish in 
the open interval 0 < t < t s. However, the method is easily modified to include the case when 
f2 Ix* (t), t] has zeroes in this interval. If it is known that t = t s corresponds to the 2nd, 3rd . . . .  
zero of O Ix (t), t] in the interval 0 < t___ ts, then equation (3) may be replaced by 

"t s is the value of t for which O [x (t), t] vanishes for the 2nd, 3rd . . . .  t ime".  

If it is not known which zero of O[x(t), t] corresponds to ts, then we define tsl, ts2 . . . .  , 
corresponding to the 1st, 2nd, ... zero of f2[x(t), t] in the interval 0 <  t__< ts, solve the opti- 
mization problems using each of these values of t s in turn, and compare the final results to give 
the optimal solution. 

Assuming that u appears linearly in eqs. (1), the Pontryagin Minimum Principle applied to 
the above problem leads immediately to the result that the optimal control is bang-bang. 
We therefore choose a nominal bang-bang control which satisfies (2) and whose components 
ui, i--1, 2, 3, have switching times h, respectively; the problem is thus reduced to finding the 
optimal switching times t~. More generally, we could assume any number of switching times 
for each component of the control. The present assumption is the simplest possible, but is 
adequate for the example of sections 3 and 4. It is pointed out by Denham and Bryson [2] that 
using more switching times than necessary in the nominal control will, in general, lead to the 
optimal control, because two switching times can become equal i n the limit ; on the other hand, 
no additional switching times can be added by the present technique. 

Substituting the nominal control in equations (1), we can solve these equations forwards in 
time and determine t s from equation (3). Knowing t s, it is possible to find out how closely the 
remaining terminal conditions (4) are satisfied. If they are satisfied within the required accuracy, 
then we have already found the optimal bang-bang control. If they are not, as is usually the 
case, then we produce small perturbations 3x in the nominal state vector by making small 
changes dti in the switching times q of the nominal control. We consider the corresponding 
small perturbations dO, dO of the terminal constraint functions O, qt. We can express dO 
in the form 

dO = aO+f dt s , (5) 

where dts is a small perturbation in final time ts, and 30  is that part of dO which is independent 
of t s. Similarly, we can express dO in the form 

dO = 30 + (k dt s . (6) 

Next, we find a matrix of influence functions ;~{ such that 

30 = 0,{)r3x y , (7) 

where all the quantities are evaluated at t = t s. In the present problem, ;t{ is a (3 x 2) matrix. 
We shall now prove that when equation (4) is not satisfied, the required change 30 in qt is 
related to a change 3u in u by the relation 

30 = x aa.d , (8) 
to 

where ;t 0 is the solution of the homogeneous linear differential equations 

,~0 = - F r 2 O ,  (9) 

with boundary conditions 

2s = (~--~-~ , i =  1, 2, 3 ; k = 1, 2 ,  (10) 
\ c~xi / ~=,f 
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and 

~xj' G u -  ~uj' j = 1 , 2 , 3 .  (11) 

Note that equations (9) are the usual adjoint equations as used in the Pontryagin Minimum 
Principle, though with different boundary conditions. 

If ~x is a small perturbation of the state vector x, then, from equations (1) and (11), it must 
satisfy 

6~ = F gx +Ggu . (12) 

Premultiply equation (12) by A~, postmultiply the transpose of equation (9) by 6x, and add the 
resulting equations to give 

d r : A ~ G g u ,  (13) 

i.e. 

s =  G, udt, (14) 

since gx (to)= 0 by hypothesis. Equations (7) and (14) give equation (8). It remains to show that 
s must satisfy the boundary conditions (10), but this result follows immediately on writing the 
left-hand side of equation (7) in the form 

3 o,l,s f x {  (15) a0=E  
i=1 

and identifying the coefficients of the fix{ on the right-hand sides of equations (7) and (15). 
By reasoning similar to that which led to equations (7), (9) and (10), we can obtain a vector of 

influence functions 2e such that 

fO = (2s T 6x s , (16) 

where 

2~ = - F r i t ~ ,  (17) 
with 

;ts = VO(t j ,  (18) 

and corresponding to equation (8) we have 

f ~  = TGgudt .  (19) 

Since dr2 =0, equation (5) gives 

dtf = - fQ/D 

= -(1/f2) fi[ ATGgudt (20) 

f t f  
= -  }to ATaGaudt' (21) 

.where 

: (22) 
Suppose that A@{ and A@{ are the values of r and ~bz, respectively, on the nominal trajectory 
at t = ty. The changes in 0i and ~b z that are required in order to satisfy equation (4) are therefore 
-A~b{ and -A~k{, respectively. Thus, using equations (6), (8) and (20), we can write 

dO = 2[Ggudt-((O/J) 2[Ggudt= --[d~,{, A~,{] , (23) 
to to 
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i 
t :  

or dO = ~oG6udt = - [A~{,  A~b{], (24) 
to 

where 
= (25) 

The optimization problem that we shall solve is : Find bu to minimize dr:, given by equation 
(21), subject to the constraints (24). The next step is to express the integrals involving bu in 
terms of the incremental switching times dq, dt2, dt3. One iteration of the method is complete 
when these increments have been determined. However, to avoid a multiplicity of cases, we 
leave the general theory at this point and consider a specific example. 

3. Rotational Motion of a Rigid Body 

The general equations of rotational motion of a rigid body may be written in the well-known 
Euler form 

A[~ - (B - C) qr = L,  ] 

B~ - (C-  A) rp M,  [ (26) 

C f - ( A - B ) p q  N,  

where A, B, C are the principal moments of inertia of the body at its centre of mass. Referred 
to the principal axes of the body at its centre of mass, p, q, r are the components of angular 
velocity and L, M, N are the components of the applied couple. 

By simple changes of variables and parameters, equations (26) can be expressed in the stan- 
dard form for state equations: 

22 bx3xl+uz-f2(x ,  u) (27) 

5r CXl X2 q-U3 ~ f3 (x ,  g) 

We assume that the values of the xi at the initial time t = to are given, and that the ui satisfy the 
constraints (2). 

The problem we shall solve is that of bringing the rotating rigid body to rest in minimum 
time. The solution of this problem by the method of "backing out of the terminal state" was 
discussed in reference [5]. The present method appears to be superior, since the resulting 
iterative process involves much less trial and error. 

The terminal constraints on the state variables are simply 

x,(t:) = O, i = 1, 2, 3. (28) 

We use the first of these to determine tf on the nominal trajectory. Thus, in the notation of the 
previous section 

~2 Ix  (tf) ,  t f ]  =-- X 1 (t f )  = 0 ,  (29) 

0 Ix (t A, t:3 = [q,{, 44 ]  - ( tA]  = o .  (30) 

From equations (10), (11), (27), (29) and (30), we find 

0 ax3 ax2) 

F = bx a 0 bxl , (31) 

\ c x  2 cx~ 0 / 

z ;  = , (321 
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G = I .  (33) 

Next, we convert the integrals involving 3u into expressions involving the dt~. Consider first 
equation (21), which, because of equation (33), now becomes 

d t r =  - i:i f fve6udt .  (34) 

Suppose that at time t, (i = 1, 2, 3) the control u i switches from.its minimum value to its maximum 
value if x~ (to) > 0, and from its maximum value to its minimum value if x~ (to) < 0. Suppose also 
that dt, is so small that the i th component of ~o~ may be regarded as constant between t~ and 
t~ + dh. Then we find 

dtz = - ~Tooaudt = Z sgn [xi(to) ] (ui,,-ui,)2pr~,(h)dti, (35) 
t i = l  

where 2pa,(h) is the i th component of ~oe evaluated at t =h-  Similarly, from equation (24), 
we find 

" \[2~176176 - \AO{ ] " (36) 
d O = _ t 2 ,m2( t , ) 2 ,m2( t2 )2om2( ta ) / { sg  n [x2(t~ = 

sgn Ix3 (to)] (u3 . -  ua~)dta 

The optimization problem now becomes: Given the switching times h, find the dti to 
minimize dty of equation (35), subject to the constraints (36). 

To take a definite case, let us assume 

Xl(tO)<0, x2(to)>0, x3(to)>0, 
together with 

l u l l  =-~ U l m ,  [U31 ~_ U3rn �9 

We still assume 

U21 ~ U2 ~_< U2u �9 

The constraints on u:, uz, u a represent the usual restrictions on the movements of the ailerons, 
elevator and rudder, respectively, on an orthodox aircraft. 

To simplify the notation, we write 

T i = d t  i . 

The optimization problem of equations (35) and (36) may then be written : Find T~, i=  t, 2, 3, 
to minimise 

3 dtl = ,__E c, r, / 
subject to the constraints 

3 

~, a u T/= b j ,  j = 1, 2 ,  
i=1  

where 

C i = - -2Ulm)~on l ,  

all = --2ulm20ali,  

a :2- - - -  --2Ulm~,~O12 ' 

b, = 3x2(t~), 

(37) 

C2 = (U2u--U21)~O~2, r = 2U3m20~3, ) 

a21 = (u2,-u21)2~a21, a31 = 2u3m20ml, l (38) 
a 2 2  = (U2u--U21)2O~22 , aa2 2U3m20m2, 

b 2 = A x 3 ( t f )  , 
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and the 2's are evaluated at the appropriate switching times, as indicated in equations (35) 
and (36). 

Problem (37) is solved by first eliminating T2 and T 3 from the objective function by means of 
the constraint equations. We find 

where 

with 

dtf  = A s T 1+ B1 , (39) 

and 

A 1= Cl+C2E2+c3E 3,~, 

I B1 c2F2+c3Fa , 

E2 = ( a l g a 3 1 - a l l a a 2 ) / D ,  E3 = ( a l l a 2 2 - a 1 2 a z l ) / D  ,~ 

Fz = ( b l a 3 2 - b z a 3 1 ) / D ,  F3 ( b 2 a 2 1 - b l a 2 2 ) / D ,  l 

D = a 2 1 a 3 2 - - a 3 1 a 2 2  . 

Since dty is to be minimised, equation (39) shows that 

(40) 

(41) 

7"1 = - X sgn [A1],  (42) 

where X > 0 is subject only to the condition that it must be small enough for the theory to be 
valid. We shall return to this point later. We next find 

T2 = E2 T1 +F2 ,  (43) 

T 3 = E 3 T I + F  3 . (44) 

The computation of T1, T2 and T a completes one iteration of the method, the new switching 
times being tl + T1, t2 + T2 and t 3 + T 3. A summary of the computational procedure follows. 

3.1. Computational Procedure 

1. Choose a nominal control, and integrate equations (27) forwards in time, stopping at time t-r 
defined by xl (t-r)=0. Retain the values of x(t), and find 

bl =x2(t-r),  b2=xa(t-r) ,  Ix(t-r)l. 

If Ix (t-r)[ < e, where e is some pre-assigned quantity, then the calculation terminates. Other- 
wise : 

2. Evaluate {2 = 21 (t r) = [ax2x 3 + ul ] t =tf, and 

= [22, 23] ,= t~  = [ b x 3 x l  +u2,  c x l x 2 + u 3 ] t = , ~ .  

3. Integrate equations (9) and (17) backwards in time, and find the components of 2 o and/ .a  
at the appropriate switching times--see equations (35) and (36). 

4. Evaluate the components of 20a and ~.pa from equations (22) and (25), respectively, at the 
appropriate switching times. 

5. Evaluate the coefficients in equations (37); these are given in equations (38). 
6. Evaluate O,/72, E3, F2, F3, A1 from equations (40) and (41). 
7. Evaluate T1, T2, T3 from equations (42)-(44) for several values of X ( > 0), starting with X = 0. 
8. Return to step 1 using a new nominal control with switching times tl + T~, t2 + T2, t3 + T3. 

Notes 

(i) When A1 =0, the final time t s is invariant for small changes 7"1, T2, T3 in the switching 
times. For the condition A1 =0  can be written 
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"~'pO 1 2p02 "~003 

'~0011 "~g, I221 /~kO31 = 0 ,  

20012 20022 20032 

which is merely a statement of the consistency of the condition dt I = 0 with the required 
terminal conditions dO = 0 and d~ = 0. 

(ii) B1 = 0 ultimately, since the terminal constraints are satisfied when Ax2 (t s) = Ax3 (t I) =0. 
(iii) In step 7, it is found convenient to search for a value of X which gives the closest approxi- 

mation to the required terminal conditions, regardless of whether this X is "sufficiently 
small" as required by the theory. In other words, equation (39) is used solely to determine 
the sign of T1. 

(iv) In common with all gradient methods, the algorithm must converge to a local optimum. 
In general, it cannot be guaranteed that the global optimum will be found. However, 
repeating the calculations with different nominal trajectories will lead to either (a) a better 
result, or (b) more confidence in the given result. 

4. Numerical Example 

The numerical example is the same as that of reference I-5]. In equations (26), we take 

A : B : C =  3:8: IO.  

Then, equations (27) become 

21 = - 0.667 g2x 3 + ii I , 

22  = 0 . 8 7 5 X 3 X l  + U  2 , 

X3 = --0"500X lx  2"-~/A 3 . 

The bounds on the controls are taken to be 

(45) 

Ulm = 0.40, U2t = --0.20, U2, = 0.13, U3m = 0.14, (46) 

and are intended to be representative values for an orthodox aircraft. We take to = 0, and 

x 1 ( 0 ) = - 2 . 0 6 1 ,  x2(0)=0.106,  x3(0)=0.746.  (47) 

It is known from reference [5] that the time-optimal control will bring the system (45)-(47) 
to rest in about 5 sec. 

We assume that at t =  0 the controls are set in the directions which oppose the respective 
components of angular velocity, i.e. 

, 1 ( 0 ) > 0 ,  ux(0)<0 ,  u3(0)<0 .  

For  the nominal control we choose switching times tl = 5.5, t2 =0.5, t3 = 1.5, and integrate 
equations (45), with (46) and (47), forward in time until x 1 (t) = 0. All the numerical integrations 
were performed using a Runge-Kutta-Merson subroutine, with steps of 0.1 in t. Smaller steps 
would have given greater accuracy, but the method can be adequately illustrated with this 
step size. 

From the results of these integrations, we find 

t I = 5 . 1 ,  b1=0.2911,  b2=0.0000,  Ix(t l)[=0.2917.  

(The result for b2 is fortuitous). 
Next, we evaluate 

{2 = 0.40, ~ = [0.13, 0.14]. 

In equations (9) and (17) for the influence functions, we reverse the time coordinate by writing 
z = t y -  t. These equations are integrated from z = 0 to -c = t I with initial conditions (10) and (18) : 
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2021 : 2022 / = 

/~031 2 0 3 2 / r = 0  ] 

[2al, ,~e2, )~a3]~=o = [1, 0, 0 ] .  

The switching times in the reversed time coordinate are 

~1 = t f - - t l  = - - 0 . 4 ,  

v 2 = t  I - t 2 =  4.6, 

I: 3 = t f - -  t 3 = 3.6. 

Since z 1 < 0, we replace this switching time by z ~ = 0 and find the components of ;t o and ;t~ at 
the appropriate switching times. Then, using equations (22) and (25), we find -03 o0) 

,toe = [ - 0 . 3 1 8 2  0.5478 

\ - 1.1485 0.3713 
and 

,too = [2.5, 0.7222, -0 .7982] .  

It is now a simple matter to evaluate the coefficients on the left-hand sides of equations (38). 
Thence, using equations (40) and (41), we find 

D = 0.04723, 

Ez = - 2 . 4 7 9 ,  E 3 = 1.618, 

F2 = 0.641, F3 = - 1 . 1 1 4 ,  

A 1 = - 2 . 9 5 2 .  

From equations (42)-(44), we construct the following table, in which the switching times are 
given to the nearest 0.1 sec. : 

TABLE1 

Search~rnewnominalcontrol:switchingtimes 

X = T1 T2 7"3 t f + T1 t2+T2 ta+T3 

0 0.6 -1 .1  5.1 1.1 0.4 
0.1 0.4 -1 .0  5.2 0.9 0.5 
0.2 0.1 -0 .8  5.3 0.6 0.7 
0.3 -0.1 -0 .6  5.4 0.4 0.9 
0.4 -0 .4  -0 .5  5.5 0.1 1.0 
0.5 -0 .6  -0 .3  5.6 -0 .1  1.2 
0.6 -0 .8  -0.1 5.7 -0 .3  1.4 

Note that the new switching time for u 1 is ty + T1, rather than t 1 + T1, since t 1 > ts for the nominal 
control. 

Returning to step 1 of the computational procedure, we integrate the state equations (45)-(47) 
forward in time for each of the cases of Table 1, using the new switching times, until xl (t)=0, 
giving t = (ty)n~w, in each case. A new switching time greater than (ts),~w may be taken equal to 
(tl) . . . .  and a switching time less than zero may be taken as zero. We obtain the following 
results for the above seven cases: 
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TABLE 2 

Determination of  new nominal control 

x (tA~,w ix(ts).,wn 

0 5.4* 0.272* 
0.1 5.3* 0.195" 
0.2 5.1 0.103 
0.3 5.0 0.051 
0.4 5.0 0.068 
0.5 5.0 0.005 
0.6 5.0 0.068 

It is clear from Table 2 that the case X = 0.5 shows the greatest improvement on the nominal 
case. If we decide at this stage that the terminal constraints are satisfied sufficiently closely by 
Ix (ts),ew[ =0.005, then the calculation terminates. Otherwise, the next step is to take the case 
X=0 .5  as the new nominal case. We then have for the nominal trajectory, 

t I = 5 . 0 ,  t 1 = 5 . 0 ,  t2=0.0, t3= 1.2. 

Proceeding as before, we find in succession 

b l = - 0 . 0 0 4 9 ,  b2-=-0 .0002 ,  

= 0.4O, q) = [0.13,0.14]. 

Solving equations (9) and (17) for the influence functions in reversed time, with the same 
initial conditions as before, we find 

,/-0.3250 -0 .3500)  

;tOo = ~-0.4050 0.6201 

\ -  1.4778 0.1866 
and 

s = [2.5, 1.5012, 0.4110] . 

From equations (40) and (41), we find 

D = 0.0777 

E 2 = - 1.665, Ea = 1.166, 

F2 = - 0.004, F 3 = - 0.013, 

A1 = -2 .691 .  

Finally, from equations (42)-(44), we construct the following table, which corresponds to 
Table 1 : 

TABLE 3 

Search for new nominal ~ontrol : switching times 

X = T 1 T 2 I"3 t ~ + T1 t 2 + r2 t 3 + T3 

0 - 0.0 - 0.0 5.0 0.0 1.2 
0.1 -0 .2  0.1 5.1 -0 .2  1.3 
0.2 --0.3 0.2 5.2 --0.3 1.4 
0.3 -0 .5  0.3 5.3 -0 .5  1.5 

The cases X = 0 and X = 0.2 of Table 3 coincide with the cases X = 0.5 and X = 0.6, respectively, 
of Table 1. Corresponding to Table 2, we now have : 

* Extrapolated, since x l ( t )<  0 for all t in the interval 0 -  < t-< tf. 
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TABLE 4 

Determination of new nominal control 

X (tz),~ w Ix(ts).ewl 

0 5.0 0.005 
0.1 5.0 0.025 
0.2 5.0 0.068 
0.3 5.0 0.111 

G. R. WaIsh 

It is clear from Table 4 that the best of the new cases is the case X = 0, i.e. the case corresponding 
to the old nominal control. Thus, to the present degree of accuracy, the process terminates. 
The optimal switching times are 

t t = 5 .0 ,  t 2 =- 0 . 0 ,  t 3 = 1.2,  

and so the optimal controls are 

ul = 0 .40  (no switching), 

u2 = 0 .13  (no switching), 

u3 = -0.14 (0< t<  1.2), 

= +0.14 (1.2< t_<_ 510). 

The minimum time is (tZ)new = 5.0. 
It is not known whether these optimal controls are unique. Theorems on the uniqueness of 

optimal controls have been proved for a very limited class of nonlinear problems [4]. Unique- 
ness can, however, be proved for norm-invariant systems. Now although the present problem 
is not norm-invariant, it becomes norm-invariant if conditions (2) on the control bounds are 
replaced by 

Ilull = (u~ +u2 +u2)�89 <= m, 

where m is a constant. This suggests there is a strong possibility that the above optimal controls 
are unique. 

5. Conclusions 

An algorithm for the computation of optimal bang-bang controls has been shown to converge 
successfully when applied to the problem of bringing a rotating rigid body to rest in minimum 
time. The method is based on the work of Bryson, Denham and Dreyfus, who showed how to 
change an optimal bang-bang control problem into a parameter optimization problem. 

A novel feature of the present approach is that the analytic conditions on the smallness of 
the perturbations from the nominal controls are ignored ; this appears to make the search for 
improved controls more efficient. The method is considered to be superior to that of "reversing 
out of the terminal state", since the only trial and error it involves is a simple one-dimensional 
search in each iteration. 
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